• Quantum calculations are performed to predict the fluorescence properties of molecular sensors.
Na przykład:
- Rengel Cane E. Sia, Ruben Arturo Arellano-Reyes, Tia E. Keyes, and J. Guthmuller, Phys. Chem. Chem. Phys. 23 (2021) 26324-26335, Radiative lifetime of a BODIPY dye as calculated by TDDFT and EOM-CCSD methods: solvent and vibronic effects.
Link: https://doi.org/10.1039/D1CP03775G
• Simulations of electron transfers in molecular photocatalysts are performed in order to understand and optimize their photophysical properties.
Na przykład:
- M. Staniszewska, S. Kupfer, and J. Guthmuller, J. Phys. Chem. C 123 (2019) 16003-16013, Effect of the Catalytic Center on the Electron Transfer Dynamics in Hydrogen-Evolving Ruthenium-Based Photocatalysts Investigated by Theoretical Calculations.
Link: https://doi.org/10.1021/acs.jpcc.9b03621
- M. Martynow, S. Kupfer, S. Rau, and J. Guthmuller, Phys. Chem. Chem. Phys. 21 (2019) 9052-9060, Excited state properties of a series of molecular photocatalysts investigated by time dependent density functional theory.
Link: https://doi.org/10.1039/C9CP00335E
• Methods to calculate resonance Raman intensities are developed in order to provide interpretation of experimental spectra.
Na przykład:
- M. Wächtler, J. Guthmuller, L. González and B. Dietzek, Coord. Chem. Rev. 256 (2012) 1479-1508, Analysis and characterization of coordination compounds by resonance Raman spectroscopy.
Link: https://doi.org/10.1016/j.ccr.2012.02.004
- J. Guthmuller, Calculation of Vibrational Resonance Raman Spectra of Molecules using Quantum Chemistry Methods. in Molecular Spectroscopy: A Quantum Chemistry Approach, Edited by Y. Ozaki, M. J. Wójcik and J. Popp, Wiley-VCH, (2019), Volume 2, Chapter 17, p497-536.
Link: https://doi.org/10.1002/9783527814596.ch17
- J. Guthmuller, J. Chem. Phys. 155 (2021) 084107, Sum-over-state expressions including second-order Herzberg-Teller effects for the calculation of absorption and resonance Raman intensities.
Link: https://doi.org/10.1063/5.0057731
• Development of methods for the calculation of cross sections for collisions of electrons and positrons with atoms and molecules
Na przykład:
- M. Franz, K. Wiciak-Pawłowska, J. Franz, Atoms 9 (2021) 99, Binary-Encounter Model for Direct Ionization of Molecules by Positron-Impact.
Link: https://doi.org/10.3390/atoms9040099
- P. Jasik, J. Franz, D. Kędziera, T. Kilich, J. Kozicki, and J. E. Sienkiewicz, J. Chem. Phys. 154 (2021) 164301, Spontaneous electron emission vs dissociation in internally hot silver dimer anions.
Link: https://doi.org/10.1063/5.0046060
- A. Karbowski, G.P. Karwasz, M. Franz, J. Franz, Acta Phys. Pol. B 51 (2020) 207
Positron Scattering and Annihilation in Organic Molecules.
Link: https://doi.org/10.5506/APhysPolB.51.207
• Calculation of cross sections for collisions between atoms or molecules with molecular ions
Na przykład:
- B. P. Mant, J. Franz, R. Wester, F. A. Gianturco, Molecular Physics 119 (2021) e1938267, Beyond the helium buffer: 12C2− rotational cooling in cold traps with H2 as a partner gas: interaction forces and quantum dynamics.
Link: https://doi.org/10.1080/00268976.2021.1938267
- J. Franz, B. P. Mant, L. González-Sánchez, R. Wester, F. A. Gianturco, J. Chem. Phys. 152 (2020) 234303, Rotational state-changing collisions of C2H− and C2N− anions with He under interstellar and cold ion trap conditions: A computational comparison.
Link: https://doi.org/10.1063/5.0011585
- J. Franz, F. A. Gianturco, Investigation of rotational state-changing collisions of C2N− ions with helium, pulished in F. Salama, H. Linnartz (Eds.), Proceedings of the International Astronomical Union, Volume 15 , Symposium S350: Laboratory Astrophysics: From Observations to Interpretation, Cambridge University Press, Cambridge (2020).
Link: https://doi.org/10.1017/S1743921319007580