Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space

Using the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.

Keywords

ANISOTROPIC ORLICZ–SOBOLEV SPACE EULER–LAGRANGE EQUATIONS VARIATIONAL FUNCTIONAL MOUNTAIN PASS THEOREM PALAIS–SMALE CONDITION

Publication year

Publication language

angielski

Journal title / conference title

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS

Page numbers [from-to]

584 - 598

Author (2)



Organization unit

Katedra Analizy Nieliniowej i Statystyki

Faculty

Wydział Fizyki Technicznej i Matematyki Stosowanej